
Valgrind Quick Reference Guide

VALGRIND MEMCHECK

$ valgrind path/to/myprog myargs
Use Valgrind Memcheck to detect common memory errors in myprog.

$ valgrind --leak-check=yes path/to/myprog
Use Valgrind Memcheck to detect memory errors and memory leaks.

$ valgrind --leak-check=yes --track-origins=yes myprog
Take longer and trace the origin of uninitialized values.

$ valgrind --track-fds=yes myprog
Detect unclosed file descriptors.

$ valgrind --xtree-memory=full --leak-check=yes myprog
Produce a xtmemory.kcg file. Install KCachegrind to examine it. It shows a visual backtrace of

places in the code that leaked memory.

$ valgrind --error-exitcode=1 myprog
Run silently. Return a failure exit code if errors found, rather than myprog’s exit code. Useful in

automated tests.

GENERAL VALGRIND TIPS

● Output has no line numbers? Have build system compile with -g.

● Programs run 10-50x slower. Test with small workloads.

● Too many errors? Fix the first errors, that may remove further errors.

● Check out the --vgdb-error and --vgdb-stop-at options for using GDB to step
through the program.

VALGRIND SUPPRESSION FILES

$ valgrind --suppressions=myerrors.supp [--tool=...]
Ignore errors of given types and locations in file mysuppressions.supp.

$ valgrind --gen-suppressions=yes [--tool=...]
Print a suppression for each error, for copying to a suppression file.

myerrors.supp
{
 __gconv_transform_ascii_internal/__mbrtowc/mbtowc

Name identifying this entry.
Memcheck:Value4
Error given by Memcheck tool. Uninitialized value of width 4 bytes.

fun:__gconv_transform_ascii_internal
 fun:__mbr*toc
 fun:mbtowc

Call stack matches these three functions in order. Note the wildcard.
}
Example entry in a suppression file. It applies if all the conditions are met.

Valgrind also ignores known errors in system libraries on many systems. On others
you may need a lot of suppression wildcards for library errors.

VALGRIND HELGRIND

$ valgrind --tool=helgrind --free-is-write=yes myprog
Use Valgrind Helgrind to detect common threading errors in myprog.

$ valgrind --tool=helgrind --track-lockorders=yes prog
Also detect potential deadlocks. Can be verbose for many programs.

Valgrind Quick Reference Guide

MEMCHECK ERRORS

Conditional jump or move depends on uninitialised
value(s)
 at 0x402DFA94: _IO_vfprintf (_itoa.h:49)
 by 0x402E8476: _IO_printf (printf.c:36)
 by 0x8048472: main (tests/manuel1.c:8)
Use of an uninitialized variable. Memcheck prints the backtrace where the value was
used. --track-origins=yes can find where it came from.

Invalid read of size 4
 at 0x40F6BBCC: (within /usr/lib/libpng.so.2.1.0.9)
 ...
 Address 0xBFFFF0E0 is not stack'd, malloc'd or free'd
Read from memory which is not allocated. In this case in unused stack memory below
the stack. Often Memcheck can say “in freed memory” etc.

Other common errors detected are: Invalid pointers in system calls. Double frees.
Mixing new/free. Overlapping memcpy. realloc(0).

TYPES OF MEMORY LEAK

● Reachable Not leaked, but not deallocated before exit

● Lost Pointer deallocated without deallocating memory

● Possibly Lost Some part can be reached but not the start of the memory

MEMCHECK QUICK TIPS

● Run until the program exits. Memcheck detects many leaks at the end.

● Test an optimised build first. An unoptimized build has different errors.

● Use custom memory management? Include valgrind/valgrind.h and use
vanilla malloc and free if RUNNING_ON_VALGRIND macro is true.

● Use custom alloc functions? Tell valgrind about them with
VALGRIND_MALLOCLIKE_BLOCK + VALGRIND_FREELIKE_BLOCK

HELGRIND ERRORS

Thread #1 unlocked a not-locked lock at 0x7FEFFFA90
 at 0x4C2408D: pthread_mutex_unlock
 by 0x40073A: nearly_main (tc09_bad_unlock.c:27)
 by 0x40079B: main (tc09_bad_unlock.c:50)
 Lock at 0x7FEFFFA90 was first observed
 at 0x4C25D01: pthread_mutex_init
 by 0x40071F: nearly_main (tc09_bad_unlock.c:23)
 by 0x40079B: main (tc09_bad_unlock.c:50)
Lock was unlocked without first being locked. Helgrind shows where it originated.

Thread #1 is the program's root thread

Thread #2 was created
...
Possible data race during read of size 4 at 0x601038 by
thread #1
Locks held: none
 at 0x400606: main (simple_race.c:13)

This conflicts with a previous write of size 4 by thread
#2
...
Location 0x601038 is 0 bytes inside global var "var"
declared at simple_race.c:3
Possible race. Helgrind shows the backtrace for both threads’ accesses

Helgrind also detects pthreads API misuses, as well as races and deadlocks.

HELGRIND QUICK TIPS

● Use pthreads best practices or get many errors reported.

● If you write your own thread functions, or alloc functions that reuse a pool of
buffers, identify them with helgrind.h macros.

