Debugging with GDB and Valgrind

Plenty of excellent resources focused on GDB can be found at the CSE351 GDB page :
https://courses.cs.washington.edu/courses/cse351/18wi/gdb/
To use GDB and Valgrind, compile your C program using the “-g” flag

Starting GDB
bash$ gdb -tui <program file name>

GDB Commands
Shortcuts for commands are bolded.
Shortcuts with more than 1 character may or may not include spaces in between chars.

[IN GDB] Controlling Program Execution

® run<args> Run your program with args

® next Go to next instruction (source line) but don‘t dive into functions
e step Go to next instruction (source line), diving into function

e finish Continue until the current function returns

[IN GDB] Setting Breakpoints and Continuing

e break <where> Set a new breakpoint
e info breakpoints Print informations about the break and watchpoints
® continue Continue normal execution

[IN GDB] Understanding the Stack and the Current Function

e |ist Shows the current or given source context

e infoargs Print the arguments to the function of the current stack frame
e infolocals Print the local variables in the currently selected stack frame
e info frame Print information about the current stack frame

o frame <frame#t> Select the stack frame to operate on

[IN GDB] Displaying Memory, Variable Values, and the Call Stack
e print /format <what> Print content of variable/memory location/register
e examine /format <what> Treat <what> as a pointer; print the content at the address it points to
e backtrace Show call stack

[IN GDB] Keeping Track of Variables over Time
e display /format Like “print”, but print the information after each stepping instruction

e watch <where> Set a new watchpoint (break when a variable changes value)

[IN GDB] Add visuals that display your code and register values as your code executes

e layout reg Displays all registers and their current values.

e layout src Displays the C code your program is currently executing.

e layout asm Displays the assembly code your program is currently executing.

e layout split Displays the C and assembly code your program is currently executing.


https://courses.cs.washington.edu/courses/cse351/18wi/gdb/

Use valgrind to detect memory leaks
bash$ valgrind —-leak-check=full <command to start your program>

e Throughout this course, we will be using valgrind to evaluate your code for memory leaks.
valgrind examines your program and identifies any possible memory leaks during execution.
Make sure to run your code through valgrind before submitting if your code usesmalloc!

Finding a String In All of Your Source Code
bash$ grep -r -n "target-string" file or directory
e Search the “target-string” in the specified file or directory. Useful for finding provided function
Implementation.

Common Memory Errors:
These are some of the more common errors related to memory management.

e Use of uninitialized memory

e Reading/writing memory after it has been freed — Dangling pointers
e Reading/writing to the end of malloc'd blocks

e Reading/writing to inappropriate areas on the stack

e Memory leaks where pointers to malloc'd blocks are lost

e Mismatched use of malloc/new/new[] vs free/delete/delete[]

e Forgetting to check for NULL or dereferencing NULL



