
Valgrind

Valgrind

• Valgrind is a memory mismanagement detector
• Shows memory leaks, deallocation errors, etc
• A wrapper around a collection of tools that do many other things

(e.g., cache profiling)
• Here we focus on the default tool, memcheck

http://valgrind.kde.org/

Memcheck

Can detect:
• Use of uninitialised memory
• Reading/writing memory after it has been free'd
• Reading/writing off the end of malloc'd blocks
• Reading/writing inappropriate areas on the stack
• Memory leaks -- where pointers to malloc'd blocks are lost forever
• Mismatched use of malloc/new/new [] vs free/delete/delete []
• Overlapping src and dst pointers in memcpy() and related

functions
• Some misuses of the POSIX pthreads API

#include <stdio.h>
#include <stdlib.h>
int main() {

int i;
int *a = malloc(sizeof(int) * 10);

if (!a) return -1; /*malloc failed*/

for (i = 0; i < 11; i++)
a[i] = i;

free(a);
return 0;

}

• $ gcc -Wall -pedantic -g example1.c -o example
• $ valgrind ./example
==23779== Memcheck, a memory error detector ==23779== Copyright (C) 2002-
2009, and GNU GPL'd, by Julian Seward et al. ==23779== Using Valgrind-3.5.0 and
LibVEX; rerun with -h for copyright info ==23779== Command: ./example
==23779== ==23779==
Invalid write of size 4 ==23779== at 0x400548: main (example1.c:9) ==23779==
Address 0x4c30068 is 0 bytes after a block of size 40 alloc'd ==23779== at
0x4A05E46: malloc (vg_replace_malloc.c:195) ==23779== by 0x40051C: main
(example1.c:6) ==23779== ==23779== ==23779==

HEAP SUMMARY: ==23779== in use at exit: 0 bytes in 0 blocks ==23779== total
heap usage: 1 allocs, 1 frees, 40 bytes allocated ==23779== ==23779== All heap
blocks were freed -- no leaks are possible ==23779== ==23779== For counts of
detected and suppressed errors, rerun with: -v ==23779== ERROR SUMMARY: 1
errors from 1 contexts (suppressed: 6 from 6)

#include <stdio.h>
#include <stdlib.h>

int main() {
int i;
int a[10];
for (i = 0; i < 9; i++)

a[i] = i;
for (i = 0; i < 10; i++)

printf("%d ", a[i]);

return 0;
}

• ==24599== Conditional jump or move depends on uninitialised value(s)
• ==24599== at 0x33A8648196: vfprintf (in /lib64/libc-2.13.so) ==24599== by

0x33A864FB59: printf (in /lib64/libc-2.13.so)
• ==24599== by 0x400567: main (example2.c:11)
• ==24599== ==24599== Use of uninitialised value of size 8 ==24599== at

0x33A864484B: _itoa_word (in /lib64/libc-2.13.so) ==24599== by
0x33A8646D50: vfprintf (in /lib64/libc-2.13.so) ==24599== by 0x33A864FB59:
printf (in /lib64/libc-2.13.so) ==24599== by 0x400567: main (example2.c:11)

• ==24599== ==24599== Conditional jump or move depends on uninitialised
value(s) ==24599== at 0x33A8644855: _itoa_word (in /lib64/libc-2.13.so)
==24599== by 0x33A8646D50: vfprintf (in /lib64/libc-2.13.so) ==24599== by
0x33A864FB59: printf (in /lib64/libc-2.13.so) ==24599== by 0x400567: main
(example2.c:11) ==24599==

0 1 2 3 4 5 6 7 8 7

#include <stdio.h>
#include <stdlib.h>

int main(){
int i; int *a;
for (i=0; i < 10; i++){

a = malloc(sizeof(int) * 100);
}
free(a);
return 0;

}

$ gcc -Wall -pedantic -g example3.c -o example3

$ valgrind --leak-check=full ./example3

==24810== HEAP SUMMARY:

==24810== in use at exit: 3,600 bytes in 9 blocks

==24810== total heap usage: 10 allocs, 1 frees, 4,000 bytes allocated

==24810==

==24810== 3,600 bytes in 9 blocks are definitely lost in loss record 1 of 1

==24810== at 0x4A05E46: malloc (vg_replace_malloc.c:195)

==24810== by 0x400525: main (example3.c:9)

==24810==

==24810== LEAK SUMMARY:

==24810== definitely lost: 3,600 bytes in 9 blocks

==24810== indirectly lost: 0 bytes in 0 blocks

==24810== possibly lost: 0 bytes in 0 blocks

==24810== still reachable: 0 bytes in 0 blocks

==24810== suppressed: 0 bytes in 0 blocks

==24810==

==24810== For counts of detected and suppressed errors, rerun with: -v

==24810== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

• If you see leaks indicated as still reachable, this generally does not
indicate a serious problem since the memory was probably still in use
at the end of the program.

• Any leaks listed as "definitely lost" should be fixed (as should ones
listed "indirectly lost" or "possibly lost"

• "indirectly lost" will happen if you do something like free the root
node of a tree but not the rest of it

• "possibly lost" generally indicates the memory is actually lost
• A function that allocates a buffer (perhaps to store a string) and returns it, but the caller

never frees the memory after it is finished.
• If a program like that runs for a long time, it will allocate a lot of memory that it does not

need.

#include <stdio.h>
int main()
{

char *p;
// Allocation #1 of 19 bytes
p = (char *) malloc(19);
// Allocation #2 of 12 bytes
p = (char *) malloc(12);
free(p);
// Allocation #3 of 16 bytes
p = (char *) malloc(16);
return 0;

}

gcc -o test -g test.c

valgrind --tool=memcheck --leak-check=yes --show-reachable=yes --num-callers=20 -
-track-fds=yes ./test

==9704== Memcheck, a memory error detector for x86-linux.
==9704== Copyright (C) 2002-2004, and GNU GPL'd, by Julian Seward et al.
==9704== Using valgrind-2.2.0, a program supervision framework for x86-linux.
==9704== Copyright (C) 2000-2004, and GNU GPL'd, by Julian Seward et al.
==9704== For more details, rerun with: -v
==9704== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 11 from 1)
==9704== malloc/free: in use at exit: 35 bytes in 2 blocks.
==9704== malloc/free: 3 allocs, 1 frees, 47 bytes allocated.
==9704== For counts of detected errors, rerun with: -v
==9704== searching for pointers to 2 not-freed blocks.
==9704== checked 1420940 bytes.

==9704== 16 bytes in 1 blocks are definitely lost in loss record 1 of 2
==9704== at 0x1B903D38: malloc (vg_replace_malloc.c:131)
==9704== by 0x80483BF: main (test.c:15)
==9704==
==9704==
==9704== 19 bytes in 1 blocks are definitely lost in loss record 2 of 2
==9704== at 0x1B903D38: malloc (vg_replace_malloc.c:131)
==9704== by 0x8048391: main (test.c:8)
==9704==
==9704== LEAK SUMMARY:
==9704== definitely lost: 35 bytes in 2 blocks.
==9704== possibly lost: 0 bytes in 0 blocks.
==9704== still reachable: 0 bytes in 0 blocks.
==9704== suppressed: 0 bytes in 0 blocks.

• Allocation #1 (19 byte leak) is lost because p is pointed elsewhere
before the memory from Allocation #1 is free'd.

• To help us track it down, Valgrind gives us a stack trace showing where
the bytes were allocated. In the 19 byte leak entry, the bytes were
allocate in test.c, line 8.

• Allocation #2 (12 byte leak) doesn't show up in the list because it is
free'd.

• Allocation #3 shows up in the list even though there is still a reference
to it (p) at program termination. This is still a memory leak! Again,
Valgrind tells us where to look for the allocation (test.c line 15).

#include <stdlib.h>

void f(void)
{

int* x = malloc(10 * sizeof(int));
x[10] = 0; // problem 1: heap block overrun

} // problem 2: memory leak -- x not freed

int main(void)
{

f();
return 0;

}

What valgrind is not:

It does not do bounds
checking on
stack/static arrays
(those not allocated
with malloc)

#include <stdio.h>
#include <stdlib.h>
int main() {

int i;
int x = 0;
int a[10];
for (i = 0; i < 11; i++)

a[i] = i;
printf("x is %d\n", x);
return 0;

}

What valgrind is not:
#include <stdio.h> #include
<stdlib.h>

int main(){
char *str = malloc(10);
gets(str);
printf("%s\n",str);
return 0;

}

• valgrind checks programs dynamically -- that is, it checks during
actual program execution whether any leaks actually occurred for
that execution

• you run valgrind on a particular set of inputs that does not cause any bad
memory accesses or memory to be leaked, valgrind will not report any errors,
even though your program does contain bugs

• For a long string, this will overflow
• Strings of length less than 10 are fine
• Never use gets

	Valgrind
	Valgrind
	Memcheck
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	What valgrind is not:��It does not do bounds �checking on �stack/static arrays �(those not allocated �with malloc)
	What valgrind is not:
	Slide Number 19

